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Abstract: Tethered capsule endomicroscopy (TCE) is an emerging screening technology that 
comprehensively obtains microstructural OCT images of the gastrointestinal (GI) tract in 
unsedated patients. To advance clinical adoption of this imaging technique, it will be 
important to validate TCE images with co-localized histology, the current diagnostic gold 
standard. One method for co-localizing OCT images with histology is image-targeted laser 
marking, which has previously been implemented using a driveshaft-based, balloon OCT 
catheter, deployed during endoscopy. In this paper, we present a TCE device that scans and 
targets the imaging beam using a low-cost stepper motor that is integrated inside the capsule. 
In combination with a 4-laser-diode, high power 1430/1450 nm marking laser system (800 
mW on the sample and 1s pulse duration), this technology generated clearly visible marks, 
with a spatial targeting accuracy of better than 0.5 mm. A laser safety study was done on 
swine esophagus ex vivo, showing that these exposure parameters did not alter the 
submucosa, with a large, 4-5x safety margin. The technology was demonstrated in living 
human subjects and shown to be effective for co-localizing OCT TCE images to biopsies 
obtained during subsequent endoscopy. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Tethered capsule endomicroscopy (TCE) is a new technology that implements optical 
coherence tomography (OCT) using a swallowable capsule that can be administered in 
unsedated patients [1,2]. Once swallowed, the device traverses the gastrointestinal (GI) tract, 
continuously collecting OCT images, creating a three-dimensional microscopic map of the 
esophagus in its entirety [1,2]. The procedure takes only 5-6 minutes and patients can return 
to their daily activities immediately after it is over [3,4]. Multiple studies have demonstrated 
the promise of using TCE for screening for esophageal diseases in patients [1–7], for other 
upper GI tract organs [8], and the use of esophageal TCE has been reported in a primary care 
clinic [3]. As opposed to endoscopy, TCE does not require sedation or a specialized setting 
and can be conducted by nurses or technicians. Following the procedure, the device can be 
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are recruited from patients with biopsy-proven BE, aged 18 and older, who are undergoing an 
upper endoscopy. After the capsule was swallowed by an unsedated subject, the operator 
started OCT imaging. Images were recorded while the capsule passively traveled down the 
esophagus. Once the OCT image indicated that the capsule had passed through the 
gastroesophageal junction and reached the stomach, the capsule was manually pulled back 
across the lower esophageal sphincter and through the esophagus using the tether. When a 
target of interest was identified during pull-back imaging, the tether was held in place, and the 
tether tick mark reading at the incisors was recorded. The operator subsequently stepped on 
the foot pedal and enabled the marking laser system by pressing the enable button. Then, the 
operator clicked on the target displayed on the screen and pressed the activation button to 
place the laser mark(s). One or two marks may be placed, depending on study protocols and 
user input prior to the procedure. After marking, the motor automatically resumed spinning to 
acquire post-marking images. Following a short period of post-marking imaging, the tether 
tick marks at the incisor were recorded again and imaging and pullback resumed. This 
process was repeated for the next region of interest (up to two marks per centimeter and a 
maximum of 6 marks per subject). Most laser markings were performed at the diseased area, 
which is typically at distal portion of the esophagus, near the gastroesophageal junction. After 
all targets in the subject were laser marked, the capsule was pulled out from the subject and a 
questionnaire regarding tolerability of the procedure was administered. Then, the subject was 
sedated and underwent standard of care endoscopy with biopsy. During the endoscopic 
procedure, the laser marks were identified and biopsies were acquired in between or adjacent 
to the laser marks. Histology from the biopsy samples were then correlated with the 
corresponding OCT images. When multiple biopsies were taken, the histology was further 
correlated with OCT data by the corresponding tether tick mark recorded at the incisors. 

2.4 The targeting accuracy of TCE laser marking 

We quantified the cross-sectional targeting accuracy in human subjects in vivo by subtracting 
the location of the selected target position in the pre-marking image from the location of 
hyper-reflective mark in the post-marking image. Pre- and post-marking images were first co-
registered using anatomical landmarks (e.g. tissue fold, crypt, and glands etc.) shared by both 
images. 

3. Results 

3. 1 Laser thermal injury tests on ex vivo swine esophagus 

Using 800 mW of power at 1430/1450 nm, the exposure time between 1 and 4 seconds 
created cauterized marks that were visually identifiable (Fig. 7(A)). Longer exposure times 
created larger cauterized marks. Figure 7(B) shows a representative NBTC histology image at 
a marking site (800 mW, 1s). 
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Fig. 11. TCE laser marking of a study subject’s (a BE patient) normal esophagus. (A) Pre-
marking OCT image of a region of the normal esophagus. The red lines indicate where the 
operator intends to place the laser marks. (B) OCT image of the study subject’s esophagus 
after laser marking. Orange arrows demarcate the hyper-reflective signal from the cauterized 
laser marks. (C) Enlarged image of the marking sites, showing the OCT appearance of the 
laser marks (orange arrows) in greater detail. (D) Endoscopy image of the laser marks (red 
arrows). (E) Histology from a biopsy taken between the two laser marks confirms that the 
tissue between the marks is squamous epithelium. 

Figure 12 shows an example of TCE laser marking guided biopsy of Barrett’s esophagus, 
in vivo. The pre-marking OCT image (Fig. 12(A)) shows BE as tissue without squamous 
layering, heterogeneous backscattering, and an irregular mucosal surface. For this case, only 
one laser mark was applied on the BE region at the location denoted by the red line (Fig. 
12(A)). After the laser mark was applied, the post-marking image showed a highly reflecting 
laser cautery mark near the intended location (Figs. 12(B), (C)). White light endoscopy 
performed after the TCE procedure demonstrates a clearly visible laser mark on the surface of 
salmon-colored esophageal mucosa (Fig. 12(D), red arrow). Histology from an endoscopic 
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biopsy obtained adjacent to the mark (Fig. 12(E)) shows specialized intestinal metaplasia, the 
most common form of BE. 

 

Fig. 12. TCE laser marking of Barrett’s esophagus in a study subject. A) Pre-marking OCT 
image of BE mucosa. The red line indicates where the operator intends to place the laser 
marks. (B) OCT image of the study subject’s esophagus after laser marking. The orange arrow 
points to hyper-reflective signal from the cauterized laser mark. (C) Enlarged image of the 
marking site, showing the OCT appearance of the laser mark (orange arrow) in greater detail. 
(D) Endoscopy image of the laser mark (red arrow). (E) Histology from the biopsy taken 
adjacent to the laser mark, confirming that the marked tissue was BE. 

3.4 The accuracy of TCE laser marking in vivo 

We were able to successfully co-register 9 pre- and post-marking images from the 5 subjects. 
After subtracting intent-to-mark and post-marking locations, the cross-sectional difference 
between the intended target and the actual marking positions was 0.95 +/− 0.53 (standard 
deviation) mm. 

4. Discussion 

The field of TCE is growing with many studies now using tethered capsules for GI tract 
diagnosis [1,2,7]. Since TCE does not have biopsy capability, it is essential that new 
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technology become available to allow TCE images to be correlated to histopathology. 
Without histopathologic validation, this promising technology cannot be used for patient care. 
Laser marking using a tethered capsule is the most attractive way to conduct these validation 
studies and thus TCE laser marking technology presented in this study is a critical 
advancement. Moreover, we have demonstrated that using TCE laser marking to guide biopsy 
is feasible and safe in human subjects. After validation, the TCE device can be used 
independently for screening unsedated patients and for placing marks at lesions that may 
require follow-up during a subsequent endoscopy. 

The main challenge that we encountered when conducting TCE-based laser marking was 
marking precision artifacts caused by motion of the capsule in the esophagus, which is greater 
than that of balloon-catheter VLE. By increasing the power to 800 mW and decreasing the 
laser exposure time to 1 second, we found that these artifacts can be overcome to produce 
tightly localized marks on the esophagus in living human subjects (Fig. 11(D) and 12(D)). 
Besides shortening the laser exposure time, we further mitigated this potential issue by 
performing laser marking only during pullback (Fig. 6). This procedural step allows us to fix 
the proximal end of the capsule to the leading edge of the peristaltic contraction. In addition, 
the size of targets, such as BE, dysplasia and adenocarcinoma are typically > few mm [17] 
and the accuracy of endoscopic biopsy is > 1 mm, which are roughly on the same scale as the 
~1mm marking error at the dynamic gastroesophageal junction (GEJ) as shown in Fig. 12(A) 
and (B). Our overall cross-sectional targeting accuracy is 0.95 ± 0.53 mm (standard deviation 
from 5 subjects, 9 marks). Finally, since the hyper-reflective laser marks can be visualized in 
OCT images, we can correlate histology with post-marking OCT images for validating the 
diagnostic accuracy against histology. Given these considerations, the accuracy of TCE laser 
marking should be more than sufficient for most regions of interest in the esophagus. 

In addition to optimizing the laser marking exposure parameters, we improved the device 
by incorporating a distal stepper micromotor in the capsule to scan the OCT beam. The A-line 
clock was used for synchronizing the A-line acquisition and motor rotation, so that a 
stationary target would not rotate and would remain stationary in the imaging window for 
high-precision marking. Once receiving the coordinate of target, the motor stopped at one of 
the 40 dwelling points that was closest to the target. The maximum discrepancy between the 
intended position and the actual dwelling position was half of the space interval between two 
neighboring dwelling points. Figure 10 shows the histogram of the size of space intervals. 
The maximum interval at the capsule’s surface was 1 mm. Therefore, the maximum 
discrepancy between the intended position and the actual dwelling position (targeting error) 
was ~0.5 mm. Under same number of steps, the targeting accuracy scales inversely with 
diameter, as the diameter goes up, the accuracy goes down and vice versa. We have initially 
used 11-mm-diameter TCE devices as this is a standard set forth by predicate devices such as 
video capsule endoscopes. Unsedated TCE targeting accuracy is similar to sedated VLE 
targeting accuracy and thus both technologies may be used to guide targeted biopsy 
acquisition. The aim of this study was to demonstrate the feasibility of performing laser 
marking on unseated patients with TCE devices. In addition, since the stepper motor does not 
require an encoder for absolute position determination, the device can be less expensive and 
complex, which is consistent with the low-cost requirement of a capsule-based screening 
technology. 

We used ex vivo animals to test our marking laser parameter set and froze those 
parameters for the clinical product. All subjects were tested under the same parameters. These 
parameters and the described clinical device satisfy the requirements for effective TCE-based 
laser marking in human subjects. For our exposure parameters (800 mW, 1430/1450 nm), the 
deposited laser energy, as determined by exposure duration (1-4 s), diffused predominantly in 
the lateral direction. From 1 to 4 seconds, the lateral injury width (Fig. 8(A)) increased by a 
factor of two, but the depth (Fig. 8(B)) only increased by ~20%. Therefore, it is not surprising 
that the laser thermal injury does not penetrate beyond muscularis mucosae even with a 4s 
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exposure time (Fig. 8(C)). The extent of injury on the swine esophagus is comparable to that 
of standard biopsy forceps. For minimizing the motion artifact, we used a 1 s exposure time, 
which has a large 4x safety margin. 

Results obtained in 5 subjects so far demonstrate that TCE laser marking can be a safe and 
effective way to correlate OCT TCE images to co-localized biopsies and corresponding 
histology. The missing mark (1 out of 12 attempts) was successfully identified in OCT image, 
but could not be identified by video endoscopy. Due to an uneven tissue surface, video 
endoscopy was not able to visualize 100% of the esophagus. In the future, we can increase the 
number of marks per target to avoid this potential issue. The co-localization capability is 
highly important now to validate the diagnosis of TCE images in histopathologic correlative 
studies. In addition, guided biopsy via TCE could also find similar utility to real-time 
targeting in VLE, enabling the sampling of aberrant tissue that is missed by random 
endoscopic biopsy, the current standard of care. TCE laser marking has advantages over 
balloon-based VLE targeting as the former can be conducted in unsedated patients at the point 
of care. Larger clinical studies using TCE laser marking should be conducted to validate TCE 
and determine its clinical utility for guiding biopsy. 

Looking towards the future, it is also possible to consider a scheme where TCE diagnosis, 
targeting, and laser marking are performed automatically, based on advanced signal 
processing [18,19] or machine learning methods [20]. Such an advance could be facilitated by 
use of a pulsed Raman fiber laser [21], coupled into the inner cladding of a double clad fiber, 
recently demonstrated for ablating tissue in real time while OCT imaging [22]. This strategy 
would also be consistent with the screening case use scenario of tethered capsule 
technologies, obviating expert image interpretation during the TCE procedure. 

5. Conclusion 

OCT-based tethered capsule endomicroscopy is an up and coming, minimally-invasive 
technique for upper GI tract microscopic screening in unsedated patients. Histologic 
validation is a critical step that is required for the adoption of TCE. Here, we have described a 
TCE laser marking system and a stepper micromotor, beam scanning capsule that allows TCE 
OCT images to be correlated to endoscopic biopsies taken from the patient. Animal and 
human data using this technology in vivo shows that TCE laser marking is an effective and 
safe method for making this correspondence. Beyond histopathologic validation, TCE laser 
marking also has the potential to become a useful tool for marking microscopically abnormal 
tissue found during an outpatient capsule screening procedure that can subsequently be 
biopsied endoscopically. The convenience and cost-profile of such a strategy could 
significantly improve the care of patients with BE and other gastrointestinal diseases. 
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